0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load5832(x1, x2, x3, x4, x5, x6) → Cond_Load5832(x1, x3, x4, x5, x6)
Load583(x1, x2, x3, x4, x5) → Load583(x2, x3, x4, x5)
Load416(x1, x2, x3) → Load416(x2, x3)
Load594(x1, x2, x3, x4) → Load594(x2, x3, x4)
Cond_Load5831(x1, x2, x3, x4, x5, x6) → Cond_Load5831(x1, x3, x4, x5, x6)
Cond_Load583(x1, x2, x3, x4, x5, x6) → Cond_Load583(x1, x3, x4, x5, x6)
Cond_Load416(x1, x2, x3, x4) → Cond_Load416(x1, x3, x4)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i33[0] →* i33[1])∧(i36[0] > 1 →* TRUE)∧(i36[0] →* i36[1]))
(1) -> (2), if ((0 →* i48[2])∧(i36[1] - 2 →* i51[2])∧(i33[1] →* i33[2])∧(i36[1] →* i36[2]))
(1) -> (4), if ((i33[1] →* i33[4])∧(i36[1] →* i36[4])∧(0 →* i48[4])∧(i36[1] - 2 →* i51[4]))
(1) -> (7), if ((i36[1] - 2 →* i50[7])∧(i33[1] →* i33[7])∧(0 →* i48[7])∧(i36[1] →* i36[7]))
(2) -> (3), if ((i36[2] →* i36[3])∧(i51[2] →* i51[3])∧(i33[2] →* i33[3])∧(i48[2] →* i48[3])∧(i51[2] > 1 && i48[2] + 1 > 0 →* TRUE))
(3) -> (2), if ((i48[3] + 1 →* i48[2])∧(i51[3] - 2 →* i51[2])∧(i33[3] →* i33[2])∧(i36[3] →* i36[2]))
(3) -> (4), if ((i48[3] + 1 →* i48[4])∧(i36[3] →* i36[4])∧(i33[3] →* i33[4])∧(i51[3] - 2 →* i51[4]))
(3) -> (7), if ((i48[3] + 1 →* i48[7])∧(i51[3] - 2 →* i50[7])∧(i36[3] →* i36[7])∧(i33[3] →* i33[7]))
(4) -> (5), if ((i51[4] > 0 && i51[4] <= 1 →* TRUE)∧(i36[4] →* i36[5])∧(i51[4] →* i51[5])∧(i48[4] →* i48[5])∧(i33[4] →* i33[5]))
(5) -> (6), if ((i48[5] →* i48[6])∧(i36[5] →* i36[6])∧(i33[5] →* i33[6]))
(6) -> (0), if ((i33[6] + 1 →* i33[0])∧(i48[6] + 1 →* i36[0]))
(7) -> (8), if ((i50[7] →* i50[8])∧(i33[7] →* i33[8])∧(i36[7] →* i36[8])∧(i48[7] →* i48[8])∧(i50[7] <= 1 && i33[7] + 1 > 0 && i48[7] + 1 > 0 →* TRUE))
(8) -> (0), if ((i48[8] + 1 →* i36[0])∧(i33[8] + 1 →* i33[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i33[0] →* i33[1])∧(i36[0] > 1 →* TRUE)∧(i36[0] →* i36[1]))
(1) -> (2), if ((0 →* i48[2])∧(i36[1] - 2 →* i51[2])∧(i33[1] →* i33[2])∧(i36[1] →* i36[2]))
(1) -> (4), if ((i33[1] →* i33[4])∧(i36[1] →* i36[4])∧(0 →* i48[4])∧(i36[1] - 2 →* i51[4]))
(1) -> (7), if ((i36[1] - 2 →* i50[7])∧(i33[1] →* i33[7])∧(0 →* i48[7])∧(i36[1] →* i36[7]))
(2) -> (3), if ((i36[2] →* i36[3])∧(i51[2] →* i51[3])∧(i33[2] →* i33[3])∧(i48[2] →* i48[3])∧(i51[2] > 1 && i48[2] + 1 > 0 →* TRUE))
(3) -> (2), if ((i48[3] + 1 →* i48[2])∧(i51[3] - 2 →* i51[2])∧(i33[3] →* i33[2])∧(i36[3] →* i36[2]))
(3) -> (4), if ((i48[3] + 1 →* i48[4])∧(i36[3] →* i36[4])∧(i33[3] →* i33[4])∧(i51[3] - 2 →* i51[4]))
(3) -> (7), if ((i48[3] + 1 →* i48[7])∧(i51[3] - 2 →* i50[7])∧(i36[3] →* i36[7])∧(i33[3] →* i33[7]))
(4) -> (5), if ((i51[4] > 0 && i51[4] <= 1 →* TRUE)∧(i36[4] →* i36[5])∧(i51[4] →* i51[5])∧(i48[4] →* i48[5])∧(i33[4] →* i33[5]))
(5) -> (6), if ((i48[5] →* i48[6])∧(i36[5] →* i36[6])∧(i33[5] →* i33[6]))
(6) -> (0), if ((i33[6] + 1 →* i33[0])∧(i48[6] + 1 →* i36[0]))
(7) -> (8), if ((i50[7] →* i50[8])∧(i33[7] →* i33[8])∧(i36[7] →* i36[8])∧(i48[7] →* i48[8])∧(i50[7] <= 1 && i33[7] + 1 > 0 && i48[7] + 1 > 0 →* TRUE))
(8) -> (0), if ((i48[8] + 1 →* i36[0])∧(i33[8] + 1 →* i33[0]))
(1) (i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1] ⇒ LOAD416(i36[0], i33[0])≥NonInfC∧LOAD416(i36[0], i33[0])≥COND_LOAD416(>(i36[0], 1), i36[0], i33[0])∧(UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥))
(2) (>(i36[0], 1)=TRUE ⇒ LOAD416(i36[0], i33[0])≥NonInfC∧LOAD416(i36[0], i33[0])≥COND_LOAD416(>(i36[0], 1), i36[0], i33[0])∧(UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥))
(3) (i36[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i36[0] ≥ 0∧[(-1)bso_41] ≥ 0)
(4) (i36[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i36[0] ≥ 0∧[(-1)bso_41] ≥ 0)
(5) (i36[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i36[0] ≥ 0∧[(-1)bso_41] ≥ 0)
(6) (i36[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥)∧0 = 0∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i36[0] ≥ 0∧0 = 0∧[(-1)bso_41] ≥ 0)
(7) (i36[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD416(>(i36[0], 1), i36[0], i33[0])), ≥)∧0 = 0∧[bni_40 + (-1)Bound*bni_40] + [bni_40]i36[0] ≥ 0∧0 = 0∧[(-1)bso_41] ≥ 0)
(8) (i48[5]=i48[6]∧i36[5]=i36[6]∧i33[5]=i33[6]∧+(i33[6], 1)=i33[0]∧+(i48[6], 1)=i36[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧0=i48[2]∧-(i36[1], 2)=i51[2]∧i33[1]=i33[2]∧i36[1]=i36[2]∧i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE ⇒ COND_LOAD416(TRUE, i36[1], i33[1])≥NonInfC∧COND_LOAD416(TRUE, i36[1], i33[1])≥LOAD583(i36[1], i33[1], -(i36[1], 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(9) (>(+(i48[6], 1), 1)=TRUE∧>(-(+(i48[6], 1), 2), 1)=TRUE ⇒ COND_LOAD416(TRUE, +(i48[6], 1), +(i33[6], 1))≥NonInfC∧COND_LOAD416(TRUE, +(i48[6], 1), +(i33[6], 1))≥LOAD583(+(i48[6], 1), +(i33[6], 1), -(+(i48[6], 1), 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(10) (i48[6] + [-1] ≥ 0∧i48[6] + [-3] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(11) (i48[6] + [-1] ≥ 0∧i48[6] + [-3] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(12) (i48[6] + [-1] ≥ 0∧i48[6] + [-3] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(13) (i48[6] + [-1] ≥ 0∧i48[6] + [-3] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(14) (i48[6] ≥ 0∧[-2] + i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[6] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(15) ([2] + i48[6] ≥ 0∧i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42 + (3)bni_42] + [bni_42]i48[6] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(16) (i48[5]=i48[6]∧i36[5]=i36[6]∧i33[5]=i33[6]∧+(i33[6], 1)=i33[0]∧+(i48[6], 1)=i36[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧i33[1]=i33[4]∧i36[1]=i36[4]∧0=i48[4]∧-(i36[1], 2)=i51[4]∧&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]1∧i51[4]=i51[5]1∧i48[4]=i48[5]1∧i33[4]=i33[5]1 ⇒ COND_LOAD416(TRUE, i36[1], i33[1])≥NonInfC∧COND_LOAD416(TRUE, i36[1], i33[1])≥LOAD583(i36[1], i33[1], -(i36[1], 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(17) (>(+(i48[6], 1), 1)=TRUE∧>(-(+(i48[6], 1), 2), 0)=TRUE∧<=(-(+(i48[6], 1), 2), 1)=TRUE ⇒ COND_LOAD416(TRUE, +(i48[6], 1), +(i33[6], 1))≥NonInfC∧COND_LOAD416(TRUE, +(i48[6], 1), +(i33[6], 1))≥LOAD583(+(i48[6], 1), +(i33[6], 1), -(+(i48[6], 1), 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(18) (i48[6] + [-1] ≥ 0∧i48[6] + [-2] ≥ 0∧[2] + [-1]i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(19) (i48[6] + [-1] ≥ 0∧i48[6] + [-2] ≥ 0∧[2] + [-1]i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(20) (i48[6] + [-1] ≥ 0∧i48[6] + [-2] ≥ 0∧[2] + [-1]i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(21) (i48[6] + [-1] ≥ 0∧i48[6] + [-2] ≥ 0∧[2] + [-1]i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(22) (i48[6] ≥ 0∧[-1] + i48[6] ≥ 0∧[1] + [-1]i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[6] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(23) ([1] + i48[6] ≥ 0∧i48[6] ≥ 0∧[-1]i48[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42 + (2)bni_42] + [bni_42]i48[6] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(24) ([1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧0 = 0∧[(-1)Bound*bni_42 + (2)bni_42] ≥ 0∧0 = 0∧[1 + (-1)bso_43] ≥ 0)
(25) (i48[5]=i48[6]∧i36[5]=i36[6]∧i33[5]=i33[6]∧+(i33[6], 1)=i33[0]∧+(i48[6], 1)=i36[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧-(i36[1], 2)=i50[7]∧i33[1]=i33[7]∧0=i48[7]∧i36[1]=i36[7]∧i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE ⇒ COND_LOAD416(TRUE, i36[1], i33[1])≥NonInfC∧COND_LOAD416(TRUE, i36[1], i33[1])≥LOAD583(i36[1], i33[1], -(i36[1], 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(26) (>(+(i48[6], 1), 1)=TRUE∧<=(-(+(i48[6], 1), 2), 1)=TRUE∧>(+(+(i33[6], 1), 1), 0)=TRUE ⇒ COND_LOAD416(TRUE, +(i48[6], 1), +(i33[6], 1))≥NonInfC∧COND_LOAD416(TRUE, +(i48[6], 1), +(i33[6], 1))≥LOAD583(+(i48[6], 1), +(i33[6], 1), -(+(i48[6], 1), 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(27) (i48[6] + [-1] ≥ 0∧[2] + [-1]i48[6] ≥ 0∧i33[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(28) (i48[6] + [-1] ≥ 0∧[2] + [-1]i48[6] ≥ 0∧i33[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(29) (i48[6] + [-1] ≥ 0∧[2] + [-1]i48[6] ≥ 0∧i33[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(30) (i48[6] ≥ 0∧[1] + [-1]i48[6] ≥ 0∧i33[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(31) (i48[6] ≥ 0∧[1] + [-1]i48[6] ≥ 0∧i33[6] + [1] ≥ 0∧i33[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(32) (i48[6] ≥ 0∧[1] + [-1]i48[6] ≥ 0∧[-1]i33[6] + [1] ≥ 0∧i33[6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[6] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(33) (i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE∧+(i48[8], 1)=i36[0]∧+(i33[8], 1)=i33[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧0=i48[2]∧-(i36[1], 2)=i51[2]∧i33[1]=i33[2]∧i36[1]=i36[2]∧i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE ⇒ COND_LOAD416(TRUE, i36[1], i33[1])≥NonInfC∧COND_LOAD416(TRUE, i36[1], i33[1])≥LOAD583(i36[1], i33[1], -(i36[1], 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(34) (>(+(i48[7], 1), 1)=TRUE∧>(+(i48[7], 1), 0)=TRUE∧>(-(+(i48[7], 1), 2), 1)=TRUE∧<=(i50[7], 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE ⇒ COND_LOAD416(TRUE, +(i48[7], 1), +(i33[7], 1))≥NonInfC∧COND_LOAD416(TRUE, +(i48[7], 1), +(i33[7], 1))≥LOAD583(+(i48[7], 1), +(i33[7], 1), -(+(i48[7], 1), 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(35) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧i48[7] + [-3] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(36) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧i48[7] + [-3] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(37) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧i48[7] + [-3] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(38) (i48[7] ≥ 0∧[1] + i48[7] ≥ 0∧[-2] + i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(39) ([2] + i48[7] ≥ 0∧[3] + i48[7] ≥ 0∧i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + (3)bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(40) ([2] + i48[7] ≥ 0∧[3] + i48[7] ≥ 0∧i48[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + (3)bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(41) (i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE∧+(i48[8], 1)=i36[0]∧+(i33[8], 1)=i33[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧i33[1]=i33[4]∧i36[1]=i36[4]∧0=i48[4]∧-(i36[1], 2)=i51[4]∧&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]∧i51[4]=i51[5]∧i48[4]=i48[5]∧i33[4]=i33[5] ⇒ COND_LOAD416(TRUE, i36[1], i33[1])≥NonInfC∧COND_LOAD416(TRUE, i36[1], i33[1])≥LOAD583(i36[1], i33[1], -(i36[1], 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(42) (>(+(i48[7], 1), 1)=TRUE∧>(+(i48[7], 1), 0)=TRUE∧>(-(+(i48[7], 1), 2), 0)=TRUE∧<=(-(+(i48[7], 1), 2), 1)=TRUE∧<=(i50[7], 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE ⇒ COND_LOAD416(TRUE, +(i48[7], 1), +(i33[7], 1))≥NonInfC∧COND_LOAD416(TRUE, +(i48[7], 1), +(i33[7], 1))≥LOAD583(+(i48[7], 1), +(i33[7], 1), -(+(i48[7], 1), 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(43) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧i48[7] + [-2] ≥ 0∧[2] + [-1]i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(44) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧i48[7] + [-2] ≥ 0∧[2] + [-1]i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(45) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧i48[7] + [-2] ≥ 0∧[2] + [-1]i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(46) (i48[7] ≥ 0∧[1] + i48[7] ≥ 0∧[-1] + i48[7] ≥ 0∧[1] + [-1]i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(47) ([1] + i48[7] ≥ 0∧[2] + i48[7] ≥ 0∧i48[7] ≥ 0∧[-1]i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + (2)bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(48) ([1] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + (2)bni_42] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(49) ([1] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧0 ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + (2)bni_42] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(50) ([1] ≥ 0∧0 ≥ 0∧0 ≥ 0∧i33[7] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + (2)bni_42] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(51) (i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE∧+(i48[8], 1)=i36[0]∧+(i33[8], 1)=i33[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧-(i36[1], 2)=i50[7]1∧i33[1]=i33[7]1∧0=i48[7]1∧i36[1]=i36[7]1∧i50[7]1=i50[8]1∧i33[7]1=i33[8]1∧i36[7]1=i36[8]1∧i48[7]1=i48[8]1∧&&(&&(<=(i50[7]1, 1), >(+(i33[7]1, 1), 0)), >(+(i48[7]1, 1), 0))=TRUE ⇒ COND_LOAD416(TRUE, i36[1], i33[1])≥NonInfC∧COND_LOAD416(TRUE, i36[1], i33[1])≥LOAD583(i36[1], i33[1], -(i36[1], 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(52) (>(+(i48[7], 1), 1)=TRUE∧>(+(i48[7], 1), 0)=TRUE∧<=(i50[7], 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE∧<=(-(+(i48[7], 1), 2), 1)=TRUE∧>(+(+(i33[7], 1), 1), 0)=TRUE ⇒ COND_LOAD416(TRUE, +(i48[7], 1), +(i33[7], 1))≥NonInfC∧COND_LOAD416(TRUE, +(i48[7], 1), +(i33[7], 1))≥LOAD583(+(i48[7], 1), +(i33[7], 1), -(+(i48[7], 1), 2), 0)∧(UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥))
(53) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0∧[2] + [-1]i48[7] ≥ 0∧i33[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(54) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0∧[2] + [-1]i48[7] ≥ 0∧i33[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(55) (i48[7] + [-1] ≥ 0∧i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0∧[2] + [-1]i48[7] ≥ 0∧i33[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(56) (i48[7] ≥ 0∧[1] + i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0∧[1] + [-1]i48[7] ≥ 0∧i33[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(57) (i48[7] ≥ 0∧[1] + i48[7] ≥ 0∧i33[7] ≥ 0∧[1] + [-1]i48[7] ≥ 0∧i33[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[1], i33[1], -(i36[1], 2), 0)), ≥)∧[(-1)Bound*bni_42 + bni_42] + [bni_42]i48[7] ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(58) (i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE ⇒ LOAD583(i36[2], i33[2], i51[2], i48[2])≥NonInfC∧LOAD583(i36[2], i33[2], i51[2], i48[2])≥COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])∧(UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥))
(59) (>(i51[2], 1)=TRUE∧>(+(i48[2], 1), 0)=TRUE ⇒ LOAD583(i36[2], i33[2], i51[2], i48[2])≥NonInfC∧LOAD583(i36[2], i33[2], i51[2], i48[2])≥COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])∧(UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥))
(60) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥)∧[(-1)Bound*bni_44] + [bni_44]i48[2] + [bni_44]i51[2] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(61) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥)∧[(-1)Bound*bni_44] + [bni_44]i48[2] + [bni_44]i51[2] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(62) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥)∧[(-1)Bound*bni_44] + [bni_44]i48[2] + [bni_44]i51[2] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(63) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_44] + [bni_44]i48[2] + [bni_44]i51[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
(64) (i51[2] ≥ 0∧i48[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_44 + (2)bni_44] + [bni_44]i48[2] + [bni_44]i51[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
(65) (i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧0=i48[2]∧-(i36[1], 2)=i51[2]∧i33[1]=i33[2]∧i36[1]=i36[2]∧i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[2]1∧-(i51[3], 2)=i51[2]1∧i33[3]=i33[2]1∧i36[3]=i36[2]1∧i36[2]1=i36[3]1∧i51[2]1=i51[3]1∧i33[2]1=i33[3]1∧i48[2]1=i48[3]1∧&&(>(i51[2]1, 1), >(+(i48[2]1, 1), 0))=TRUE ⇒ COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3])≥NonInfC∧COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3])≥LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))∧(UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥))
(66) (>(i36[0], 1)=TRUE∧>(-(i36[0], 2), 1)=TRUE∧>(-(-(i36[0], 2), 2), 1)=TRUE ⇒ COND_LOAD583(TRUE, i36[0], i33[0], -(i36[0], 2), 0)≥NonInfC∧COND_LOAD583(TRUE, i36[0], i33[0], -(i36[0], 2), 0)≥LOAD583(i36[0], i33[0], -(-(i36[0], 2), 2), +(0, 1))∧(UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥))
(67) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(68) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(69) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(70) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-6] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(71) (i36[0] ≥ 0∧[-2] + i36[0] ≥ 0∧[-4] + i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(72) ([2] + i36[0] ≥ 0∧i36[0] ≥ 0∧[-2] + i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(73) ([4] + i36[0] ≥ 0∧[2] + i36[0] ≥ 0∧i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(74) (i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧0=i48[2]∧-(i36[1], 2)=i51[2]∧i33[1]=i33[2]∧i36[1]=i36[2]∧i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[4]∧i36[3]=i36[4]∧i33[3]=i33[4]∧-(i51[3], 2)=i51[4]∧&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]∧i51[4]=i51[5]∧i48[4]=i48[5]∧i33[4]=i33[5] ⇒ COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3])≥NonInfC∧COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3])≥LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))∧(UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥))
(75) (>(i36[0], 1)=TRUE∧>(-(i36[0], 2), 1)=TRUE∧>(-(-(i36[0], 2), 2), 0)=TRUE∧<=(-(-(i36[0], 2), 2), 1)=TRUE ⇒ COND_LOAD583(TRUE, i36[0], i33[0], -(i36[0], 2), 0)≥NonInfC∧COND_LOAD583(TRUE, i36[0], i33[0], -(i36[0], 2), 0)≥LOAD583(i36[0], i33[0], -(-(i36[0], 2), 2), +(0, 1))∧(UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥))
(76) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-5] ≥ 0∧[5] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(77) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-5] ≥ 0∧[5] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(78) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-5] ≥ 0∧[5] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(79) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧i36[0] + [-5] ≥ 0∧[5] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(80) (i36[0] ≥ 0∧[-2] + i36[0] ≥ 0∧[-3] + i36[0] ≥ 0∧[3] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(81) ([2] + i36[0] ≥ 0∧i36[0] ≥ 0∧[-1] + i36[0] ≥ 0∧[1] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(82) ([3] + i36[0] ≥ 0∧[1] + i36[0] ≥ 0∧i36[0] ≥ 0∧[-1]i36[0] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(83) ([3] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(84) ([1] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(85) (i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧0=i48[2]∧-(i36[1], 2)=i51[2]∧i33[1]=i33[2]∧i36[1]=i36[2]∧i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[7]∧-(i51[3], 2)=i50[7]∧i36[3]=i36[7]∧i33[3]=i33[7]∧i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE ⇒ COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3])≥NonInfC∧COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3])≥LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))∧(UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥))
(86) (>(i36[0], 1)=TRUE∧>(-(i36[0], 2), 1)=TRUE∧<=(-(-(i36[0], 2), 2), 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE ⇒ COND_LOAD583(TRUE, i36[0], i33[7], -(i36[0], 2), 0)≥NonInfC∧COND_LOAD583(TRUE, i36[0], i33[7], -(i36[0], 2), 0)≥LOAD583(i36[0], i33[7], -(-(i36[0], 2), 2), +(0, 1))∧(UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥))
(87) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧[5] + [-1]i36[0] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(88) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧[5] + [-1]i36[0] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(89) (i36[0] + [-2] ≥ 0∧i36[0] + [-4] ≥ 0∧[5] + [-1]i36[0] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-3)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(90) (i36[0] ≥ 0∧[-2] + i36[0] ≥ 0∧[3] + [-1]i36[0] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(91) ([2] + i36[0] ≥ 0∧i36[0] ≥ 0∧[1] + [-1]i36[0] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))), ≥)∧[bni_46 + (-1)Bound*bni_46] + [bni_46]i36[0] ≥ 0∧[(-1)bso_47] ≥ 0)
(92) (i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[2]1∧-(i51[3], 2)=i51[2]1∧i33[3]=i33[2]1∧i36[3]=i36[2]1∧i36[2]1=i36[3]1∧i51[2]1=i51[3]1∧i33[2]1=i33[3]1∧i48[2]1=i48[3]1∧&&(>(i51[2]1, 1), >(+(i48[2]1, 1), 0))=TRUE∧+(i48[3]1, 1)=i48[2]2∧-(i51[3]1, 2)=i51[2]2∧i33[3]1=i33[2]2∧i36[3]1=i36[2]2∧i36[2]2=i36[3]2∧i51[2]2=i51[3]2∧i33[2]2=i33[3]2∧i48[2]2=i48[3]2∧&&(>(i51[2]2, 1), >(+(i48[2]2, 1), 0))=TRUE ⇒ COND_LOAD583(TRUE, i36[3]1, i33[3]1, i51[3]1, i48[3]1)≥NonInfC∧COND_LOAD583(TRUE, i36[3]1, i33[3]1, i51[3]1, i48[3]1)≥LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))∧(UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥))
(93) (>(i51[2], 1)=TRUE∧>(+(i48[2], 1), 0)=TRUE∧>(-(i51[2], 2), 1)=TRUE∧>(+(+(i48[2], 1), 1), 0)=TRUE∧>(-(-(i51[2], 2), 2), 1)=TRUE∧>(+(+(+(i48[2], 1), 1), 1), 0)=TRUE ⇒ COND_LOAD583(TRUE, i36[2], i33[2], -(i51[2], 2), +(i48[2], 1))≥NonInfC∧COND_LOAD583(TRUE, i36[2], i33[2], -(i51[2], 2), +(i48[2], 1))≥LOAD583(i36[2], i33[2], -(-(i51[2], 2), 2), +(+(i48[2], 1), 1))∧(UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥))
(94) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-6] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(95) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-6] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(96) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-6] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(97) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-6] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(98) (i51[2] ≥ 0∧i48[2] ≥ 0∧[-2] + i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧[-4] + i51[2] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(99) ([2] + i51[2] ≥ 0∧i48[2] ≥ 0∧i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧[-2] + i51[2] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(100) ([4] + i51[2] ≥ 0∧i48[2] ≥ 0∧[2] + i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] ≥ 0∧i48[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(4)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(101) ([4] + i51[2] ≥ 0∧i48[2] ≥ 0∧[2] + i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(4)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(102) (i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[2]1∧-(i51[3], 2)=i51[2]1∧i33[3]=i33[2]1∧i36[3]=i36[2]1∧i36[2]1=i36[3]1∧i51[2]1=i51[3]1∧i33[2]1=i33[3]1∧i48[2]1=i48[3]1∧&&(>(i51[2]1, 1), >(+(i48[2]1, 1), 0))=TRUE∧+(i48[3]1, 1)=i48[4]∧i36[3]1=i36[4]∧i33[3]1=i33[4]∧-(i51[3]1, 2)=i51[4]∧&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]∧i51[4]=i51[5]∧i48[4]=i48[5]∧i33[4]=i33[5] ⇒ COND_LOAD583(TRUE, i36[3]1, i33[3]1, i51[3]1, i48[3]1)≥NonInfC∧COND_LOAD583(TRUE, i36[3]1, i33[3]1, i51[3]1, i48[3]1)≥LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))∧(UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥))
(103) (>(i51[2], 1)=TRUE∧>(+(i48[2], 1), 0)=TRUE∧>(-(i51[2], 2), 1)=TRUE∧>(+(+(i48[2], 1), 1), 0)=TRUE∧>(-(-(i51[2], 2), 2), 0)=TRUE∧<=(-(-(i51[2], 2), 2), 1)=TRUE ⇒ COND_LOAD583(TRUE, i36[2], i33[2], -(i51[2], 2), +(i48[2], 1))≥NonInfC∧COND_LOAD583(TRUE, i36[2], i33[2], -(i51[2], 2), +(i48[2], 1))≥LOAD583(i36[2], i33[2], -(-(i51[2], 2), 2), +(+(i48[2], 1), 1))∧(UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥))
(104) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-5] ≥ 0∧[5] + [-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(105) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-5] ≥ 0∧[5] + [-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(106) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-5] ≥ 0∧[5] + [-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(107) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] + [-5] ≥ 0∧[5] + [-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(108) (i51[2] ≥ 0∧i48[2] ≥ 0∧[-2] + i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧[-3] + i51[2] ≥ 0∧[3] + [-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(109) ([2] + i51[2] ≥ 0∧i48[2] ≥ 0∧i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧[-1] + i51[2] ≥ 0∧[1] + [-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(110) ([3] + i51[2] ≥ 0∧i48[2] ≥ 0∧[1] + i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧i51[2] ≥ 0∧[-1]i51[2] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(111) ([3] ≥ 0∧i48[2] ≥ 0∧[1] ≥ 0∧i48[2] + [1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(112) (i48[2] ≥ 0∧[1] ≥ 0∧i48[2] + [1] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(113) (i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[2]1∧-(i51[3], 2)=i51[2]1∧i33[3]=i33[2]1∧i36[3]=i36[2]1∧i36[2]1=i36[3]1∧i51[2]1=i51[3]1∧i33[2]1=i33[3]1∧i48[2]1=i48[3]1∧&&(>(i51[2]1, 1), >(+(i48[2]1, 1), 0))=TRUE∧+(i48[3]1, 1)=i48[7]∧-(i51[3]1, 2)=i50[7]∧i36[3]1=i36[7]∧i33[3]1=i33[7]∧i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE ⇒ COND_LOAD583(TRUE, i36[3]1, i33[3]1, i51[3]1, i48[3]1)≥NonInfC∧COND_LOAD583(TRUE, i36[3]1, i33[3]1, i51[3]1, i48[3]1)≥LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))∧(UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥))
(114) (>(i51[2], 1)=TRUE∧>(+(i48[2], 1), 0)=TRUE∧>(-(i51[2], 2), 1)=TRUE∧>(+(+(i48[2], 1), 1), 0)=TRUE∧>(+(+(+(i48[2], 1), 1), 1), 0)=TRUE∧<=(-(-(i51[2], 2), 2), 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE ⇒ COND_LOAD583(TRUE, i36[2], i33[7], -(i51[2], 2), +(i48[2], 1))≥NonInfC∧COND_LOAD583(TRUE, i36[2], i33[7], -(i51[2], 2), +(i48[2], 1))≥LOAD583(i36[2], i33[7], -(-(i51[2], 2), 2), +(+(i48[2], 1), 1))∧(UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥))
(115) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i48[2] + [2] ≥ 0∧[5] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(116) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i48[2] + [2] ≥ 0∧[5] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(117) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i48[2] + [2] ≥ 0∧[5] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧[(-1)bso_47] ≥ 0)
(118) (i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i51[2] + [-4] ≥ 0∧i48[2] + [1] ≥ 0∧i48[2] + [2] ≥ 0∧[5] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(119) (i51[2] ≥ 0∧i48[2] ≥ 0∧[-2] + i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧i48[2] + [2] ≥ 0∧[3] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧[(-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(120) ([2] + i51[2] ≥ 0∧i48[2] ≥ 0∧i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧i48[2] + [2] ≥ 0∧[1] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(121) ([2] + i51[2] ≥ 0∧i48[2] ≥ 0∧i51[2] ≥ 0∧i48[2] + [1] ≥ 0∧[1] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD583(i36[3]1, i33[3]1, -(i51[3]1, 2), +(i48[3]1, 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i48[2] + [bni_46]i51[2] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(122) (&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]∧i51[4]=i51[5]∧i48[4]=i48[5]∧i33[4]=i33[5] ⇒ LOAD583(i36[4], i33[4], i51[4], i48[4])≥NonInfC∧LOAD583(i36[4], i33[4], i51[4], i48[4])≥COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])∧(UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥))
(123) (>(i51[4], 0)=TRUE∧<=(i51[4], 1)=TRUE ⇒ LOAD583(i36[4], i33[4], i51[4], i48[4])≥NonInfC∧LOAD583(i36[4], i33[4], i51[4], i48[4])≥COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])∧(UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥))
(124) (i51[4] + [-1] ≥ 0∧[1] + [-1]i51[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i48[4] + [bni_48]i51[4] ≥ 0∧[-1 + (-1)bso_49] + i51[4] ≥ 0)
(125) (i51[4] + [-1] ≥ 0∧[1] + [-1]i51[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i48[4] + [bni_48]i51[4] ≥ 0∧[-1 + (-1)bso_49] + i51[4] ≥ 0)
(126) (i51[4] + [-1] ≥ 0∧[1] + [-1]i51[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i48[4] + [bni_48]i51[4] ≥ 0∧[-1 + (-1)bso_49] + i51[4] ≥ 0)
(127) (i51[4] + [-1] ≥ 0∧[1] + [-1]i51[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥)∧[bni_48] = 0∧0 = 0∧0 = 0∧[(-1)Bound*bni_48] + [bni_48]i51[4] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[-1 + (-1)bso_49] + i51[4] ≥ 0)
(128) (i51[4] ≥ 0∧[-1]i51[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥)∧[bni_48] = 0∧0 = 0∧0 = 0∧[(-1)Bound*bni_48 + bni_48] + [bni_48]i51[4] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_49] + i51[4] ≥ 0)
(129) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])), ≥)∧[bni_48] = 0∧0 = 0∧0 = 0∧[(-1)Bound*bni_48 + bni_48] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(130) (i48[5]=i48[6]∧i36[5]=i36[6]∧i33[5]=i33[6] ⇒ COND_LOAD5831(TRUE, i36[5], i33[5], i51[5], i48[5])≥NonInfC∧COND_LOAD5831(TRUE, i36[5], i33[5], i51[5], i48[5])≥LOAD594(i36[5], i33[5], i48[5])∧(UIncreasing(LOAD594(i36[5], i33[5], i48[5])), ≥))
(131) (COND_LOAD5831(TRUE, i36[5], i33[5], i51[5], i48[5])≥NonInfC∧COND_LOAD5831(TRUE, i36[5], i33[5], i51[5], i48[5])≥LOAD594(i36[5], i33[5], i48[5])∧(UIncreasing(LOAD594(i36[5], i33[5], i48[5])), ≥))
(132) ((UIncreasing(LOAD594(i36[5], i33[5], i48[5])), ≥)∧[(-1)bso_51] ≥ 0)
(133) ((UIncreasing(LOAD594(i36[5], i33[5], i48[5])), ≥)∧[(-1)bso_51] ≥ 0)
(134) ((UIncreasing(LOAD594(i36[5], i33[5], i48[5])), ≥)∧[(-1)bso_51] ≥ 0)
(135) ((UIncreasing(LOAD594(i36[5], i33[5], i48[5])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_51] ≥ 0)
(136) (i33[1]=i33[4]∧i36[1]=i36[4]∧0=i48[4]∧-(i36[1], 2)=i51[4]∧&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]∧i51[4]=i51[5]∧i48[4]=i48[5]∧i33[4]=i33[5]∧i48[5]=i48[6]∧i36[5]=i36[6]∧i33[5]=i33[6]∧+(i33[6], 1)=i33[0]∧+(i48[6], 1)=i36[0]∧i33[0]=i33[1]1∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]1 ⇒ LOAD594(i36[6], i33[6], i48[6])≥NonInfC∧LOAD594(i36[6], i33[6], i48[6])≥LOAD416(+(i48[6], 1), +(i33[6], 1))∧(UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥))
(137) (+(i48[3], 1)=i48[4]∧i36[3]=i36[4]∧i33[3]=i33[4]∧-(i51[3], 2)=i51[4]∧&&(>(i51[4], 0), <=(i51[4], 1))=TRUE∧i36[4]=i36[5]∧i51[4]=i51[5]∧i48[4]=i48[5]∧i33[4]=i33[5]∧i48[5]=i48[6]∧i36[5]=i36[6]∧i33[5]=i33[6]∧+(i33[6], 1)=i33[0]∧+(i48[6], 1)=i36[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1] ⇒ LOAD594(i36[6], i33[6], i48[6])≥NonInfC∧LOAD594(i36[6], i33[6], i48[6])≥LOAD416(+(i48[6], 1), +(i33[6], 1))∧(UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥))
(138) (>(+(+(i48[3], 1), 1), 1)=TRUE∧>(-(i51[3], 2), 0)=TRUE∧<=(-(i51[3], 2), 1)=TRUE ⇒ LOAD594(i36[3], i33[3], +(i48[3], 1))≥NonInfC∧LOAD594(i36[3], i33[3], +(i48[3], 1))≥LOAD416(+(+(i48[3], 1), 1), +(i33[3], 1))∧(UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥))
(139) (i48[3] ≥ 0∧i51[3] + [-3] ≥ 0∧[3] + [-1]i51[3] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥)∧[bni_52 + (-1)Bound*bni_52] + [bni_52]i48[3] ≥ 0∧[(-1)bso_53] ≥ 0)
(140) (i48[3] ≥ 0∧i51[3] + [-3] ≥ 0∧[3] + [-1]i51[3] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥)∧[bni_52 + (-1)Bound*bni_52] + [bni_52]i48[3] ≥ 0∧[(-1)bso_53] ≥ 0)
(141) (i48[3] ≥ 0∧i51[3] + [-3] ≥ 0∧[3] + [-1]i51[3] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥)∧[bni_52 + (-1)Bound*bni_52] + [bni_52]i48[3] ≥ 0∧[(-1)bso_53] ≥ 0)
(142) (i48[3] ≥ 0∧[3] + [-1]i51[3] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[6], 1), +(i33[6], 1))), ≥)∧0 = 0∧0 = 0∧[bni_52 + (-1)Bound*bni_52] + [bni_52]i48[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_53] ≥ 0)
(143) (i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE ⇒ LOAD583(i36[7], i33[7], i50[7], i48[7])≥NonInfC∧LOAD583(i36[7], i33[7], i50[7], i48[7])≥COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])∧(UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥))
(144) (>(+(i48[7], 1), 0)=TRUE∧<=(i50[7], 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE ⇒ LOAD583(i36[7], i33[7], i50[7], i48[7])≥NonInfC∧LOAD583(i36[7], i33[7], i50[7], i48[7])≥COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])∧(UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥))
(145) (i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥)∧[(-1)Bound*bni_54] + [bni_54]i48[7] + [bni_54]i50[7] ≥ 0∧[(-1)bso_55] ≥ 0)
(146) (i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥)∧[(-1)Bound*bni_54] + [bni_54]i48[7] + [bni_54]i50[7] ≥ 0∧[(-1)bso_55] ≥ 0)
(147) (i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥)∧[(-1)Bound*bni_54] + [bni_54]i48[7] + [bni_54]i50[7] ≥ 0∧[(-1)bso_55] ≥ 0)
(148) (i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥)∧0 = 0∧[(-1)Bound*bni_54] + [bni_54]i48[7] + [bni_54]i50[7] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(149) (i48[7] ≥ 0∧[1] + [-1]i50[7] ≥ 0∧i33[7] ≥ 0∧i50[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥)∧0 = 0∧[(-1)Bound*bni_54] + [bni_54]i48[7] + [bni_54]i50[7] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(150) (i48[7] ≥ 0∧[1] + i50[7] ≥ 0∧i33[7] ≥ 0∧i50[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])), ≥)∧0 = 0∧[(-1)Bound*bni_54] + [bni_54]i48[7] + [(-1)bni_54]i50[7] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(151) (i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1]∧-(i36[1], 2)=i50[7]∧i33[1]=i33[7]∧0=i48[7]∧i36[1]=i36[7]∧i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE∧+(i48[8], 1)=i36[0]1∧+(i33[8], 1)=i33[0]1∧i33[0]1=i33[1]1∧>(i36[0]1, 1)=TRUE∧i36[0]1=i36[1]1 ⇒ COND_LOAD5832(TRUE, i36[8], i33[8], i50[8], i48[8])≥NonInfC∧COND_LOAD5832(TRUE, i36[8], i33[8], i50[8], i48[8])≥LOAD416(+(i48[8], 1), +(i33[8], 1))∧(UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥))
(152) (i36[2]=i36[3]∧i51[2]=i51[3]∧i33[2]=i33[3]∧i48[2]=i48[3]∧&&(>(i51[2], 1), >(+(i48[2], 1), 0))=TRUE∧+(i48[3], 1)=i48[7]∧-(i51[3], 2)=i50[7]∧i36[3]=i36[7]∧i33[3]=i33[7]∧i50[7]=i50[8]∧i33[7]=i33[8]∧i36[7]=i36[8]∧i48[7]=i48[8]∧&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0))=TRUE∧+(i48[8], 1)=i36[0]∧+(i33[8], 1)=i33[0]∧i33[0]=i33[1]∧>(i36[0], 1)=TRUE∧i36[0]=i36[1] ⇒ COND_LOAD5832(TRUE, i36[8], i33[8], i50[8], i48[8])≥NonInfC∧COND_LOAD5832(TRUE, i36[8], i33[8], i50[8], i48[8])≥LOAD416(+(i48[8], 1), +(i33[8], 1))∧(UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥))
(153) (>(+(+(i48[2], 1), 1), 1)=TRUE∧>(i51[2], 1)=TRUE∧>(+(i48[2], 1), 0)=TRUE∧>(+(+(i48[2], 1), 1), 0)=TRUE∧<=(-(i51[2], 2), 1)=TRUE∧>(+(i33[7], 1), 0)=TRUE ⇒ COND_LOAD5832(TRUE, i36[2], i33[7], -(i51[2], 2), +(i48[2], 1))≥NonInfC∧COND_LOAD5832(TRUE, i36[2], i33[7], -(i51[2], 2), +(i48[2], 1))≥LOAD416(+(+(i48[2], 1), 1), +(i33[7], 1))∧(UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥))
(154) (i48[2] ≥ 0∧i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i48[2] + [1] ≥ 0∧[3] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥)∧[(-1)bni_56 + (-1)Bound*bni_56] + [bni_56]i48[2] + [bni_56]i51[2] ≥ 0∧[-2 + (-1)bso_57] + i51[2] ≥ 0)
(155) (i48[2] ≥ 0∧i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i48[2] + [1] ≥ 0∧[3] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥)∧[(-1)bni_56 + (-1)Bound*bni_56] + [bni_56]i48[2] + [bni_56]i51[2] ≥ 0∧[-2 + (-1)bso_57] + i51[2] ≥ 0)
(156) (i48[2] ≥ 0∧i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i48[2] + [1] ≥ 0∧[3] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥)∧[(-1)bni_56 + (-1)Bound*bni_56] + [bni_56]i48[2] + [bni_56]i51[2] ≥ 0∧[-2 + (-1)bso_57] + i51[2] ≥ 0)
(157) (i48[2] ≥ 0∧i51[2] + [-2] ≥ 0∧i48[2] ≥ 0∧i48[2] + [1] ≥ 0∧[3] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥)∧0 = 0∧[(-1)bni_56 + (-1)Bound*bni_56] + [bni_56]i48[2] + [bni_56]i51[2] ≥ 0∧0 = 0∧[-2 + (-1)bso_57] + i51[2] ≥ 0)
(158) (i48[2] ≥ 0∧i51[2] ≥ 0∧i48[2] ≥ 0∧i48[2] + [1] ≥ 0∧[1] + [-1]i51[2] ≥ 0∧i33[7] ≥ 0 ⇒ (UIncreasing(LOAD416(+(i48[8], 1), +(i33[8], 1))), ≥)∧0 = 0∧[bni_56 + (-1)Bound*bni_56] + [bni_56]i48[2] + [bni_56]i51[2] ≥ 0∧0 = 0∧[(-1)bso_57] + i51[2] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD416(x1, x2)) = [-1] + x1
POL(COND_LOAD416(x1, x2, x3)) = [-1] + x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(LOAD583(x1, x2, x3, x4)) = x4 + x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(0) = 0
POL(COND_LOAD583(x1, x2, x3, x4, x5)) = [-1] + x5 + x4
POL(&&(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(COND_LOAD5831(x1, x2, x3, x4, x5)) = x5 + [-1]x1
POL(<=(x1, x2)) = [-1]
POL(LOAD594(x1, x2, x3)) = x3
POL(COND_LOAD5832(x1, x2, x3, x4, x5)) = x5 + x4
COND_LOAD416(TRUE, i36[1], i33[1]) → LOAD583(i36[1], i33[1], -(i36[1], 2), 0)
LOAD583(i36[2], i33[2], i51[2], i48[2]) → COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])
LOAD594(i36[6], i33[6], i48[6]) → LOAD416(+(i48[6], 1), +(i33[6], 1))
LOAD416(i36[0], i33[0]) → COND_LOAD416(>(i36[0], 1), i36[0], i33[0])
COND_LOAD416(TRUE, i36[1], i33[1]) → LOAD583(i36[1], i33[1], -(i36[1], 2), 0)
LOAD583(i36[2], i33[2], i51[2], i48[2]) → COND_LOAD583(&&(>(i51[2], 1), >(+(i48[2], 1), 0)), i36[2], i33[2], i51[2], i48[2])
COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3]) → LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))
LOAD594(i36[6], i33[6], i48[6]) → LOAD416(+(i48[6], 1), +(i33[6], 1))
COND_LOAD5832(TRUE, i36[8], i33[8], i50[8], i48[8]) → LOAD416(+(i48[8], 1), +(i33[8], 1))
LOAD416(i36[0], i33[0]) → COND_LOAD416(>(i36[0], 1), i36[0], i33[0])
COND_LOAD583(TRUE, i36[3], i33[3], i51[3], i48[3]) → LOAD583(i36[3], i33[3], -(i51[3], 2), +(i48[3], 1))
LOAD583(i36[4], i33[4], i51[4], i48[4]) → COND_LOAD5831(&&(>(i51[4], 0), <=(i51[4], 1)), i36[4], i33[4], i51[4], i48[4])
COND_LOAD5831(TRUE, i36[5], i33[5], i51[5], i48[5]) → LOAD594(i36[5], i33[5], i48[5])
LOAD583(i36[7], i33[7], i50[7], i48[7]) → COND_LOAD5832(&&(&&(<=(i50[7], 1), >(+(i33[7], 1), 0)), >(+(i48[7], 1), 0)), i36[7], i33[7], i50[7], i48[7])
COND_LOAD5832(TRUE, i36[8], i33[8], i50[8], i48[8]) → LOAD416(+(i48[8], 1), +(i33[8], 1))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(8) -> (0), if ((i48[8] + 1 →* i36[0])∧(i33[8] + 1 →* i33[0]))
(3) -> (4), if ((i48[3] + 1 →* i48[4])∧(i36[3] →* i36[4])∧(i33[3] →* i33[4])∧(i51[3] - 2 →* i51[4]))
(4) -> (5), if ((i51[4] > 0 && i51[4] <= 1 →* TRUE)∧(i36[4] →* i36[5])∧(i51[4] →* i51[5])∧(i48[4] →* i48[5])∧(i33[4] →* i33[5]))
(3) -> (7), if ((i48[3] + 1 →* i48[7])∧(i51[3] - 2 →* i50[7])∧(i36[3] →* i36[7])∧(i33[3] →* i33[7]))
(7) -> (8), if ((i50[7] →* i50[8])∧(i33[7] →* i33[8])∧(i36[7] →* i36[8])∧(i48[7] →* i48[8])∧(i50[7] <= 1 && i33[7] + 1 > 0 && i48[7] + 1 > 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(4) -> (5), if ((i51[4] > 0 && i51[4] <= 1 →* TRUE)∧(i36[4] →* i36[5])∧(i51[4] →* i51[5])∧(i48[4] →* i48[5])∧(i33[4] →* i33[5]))